Nanoscale Characterization of Metal/Semiconductor Nanocontacts

نویسندگان

  • C. Tivarus
  • K.-B. Park
  • M. K. Hudait
  • S. A. Ringel
  • J. P. Pelz
چکیده

Ballistic Electron Emission Microscopy (BEEM) and finite-element electrostatic modeling were used to quantify how “small-size” effects modify the energy barrier at metal/semiconductor nanostructure nanocontacts, formed by making Schottky contacts to cleaved edges of GaAs quantum wells (QWs). The Schottky barrier height over the QWs was found to systematically increase with decreasing QW width, by up to ~140 meV for a 1nm QW. This is mostly due to a large quantum-confinement increase (~200 meV for a 1nm QW), modified by smaller decreases due to “environmental” electric field effects. Our modeling gives excellent quantitative agreement with measurements for a wide range of QW widths when both quantum confinement and environmental electric fields are considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both...

متن کامل

Metal-semiconductor nanocontacts: silicon nanowires

Silicon nanowires assembled from clusters or etched from the bulk, connected to aluminum electrodes and passivated, are studied with large-scale local-density-functional simulations. Short ( approximately 0.6 nm) wires are fully metallized by metal-induced gap states resulting in finite conductance ( approximately e(2)/h). For longer wires ( approximately 2.5 nm) nanoscale Schottky barriers dev...

متن کامل

Nanoelectronic device applications of a chemically stable GaAs structure

We report on nanoelectronic device applications of a nonalloyed contact structure which utilizes a surface layer of low-temperature grown GaAs as a chemically stable surface. In contrast to typical ex situ ohmic contacts formed on n-type semiconductors such as GaAs, this approach can provide uniform contact interfaces which are essentially planar injectors, making them suitable as contacts to s...

متن کامل

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Synthsis of Ag2O2 Semiconductor Micropowder by Plasma Electrolysis Methode and its Optical Characterization

Plasma electrolysis is a novel method for synthesis and processing of materials and nanomaterials, which uses plasma-solution interaction. In this paper, a simple setup of pin-to-solution electrical discharge with aqueous solution of silver nitrate in normal air is used. Experimental observations show that by start of electrical discharge and formation of air plasma between metal pin and soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005